High Throughput Protein Purification and Data Management System for Structural Genomics of Arabidopsis thaliana

Won Bae Jeon¹, Adrian Hegeman¹, Brian Fox¹, Bryan Ramirez¹, Claudia Cornelescu¹, Craig Bingman¹, Craig Newman¹, Dave Aceti¹, Dave Dyer¹, Dave Hruby¹, David Smith¹, Dmitriy Vinaraov¹, Eldon Ulrich¹, Frank Vojtik¹, Gabriel Cornelescu¹, Gary Wesensberg¹, Hamid Eghbalnia¹, Hassan Sreenath¹, Heather Burch¹, Ivan Rayment¹, Jianhua Zhang¹, Jikui Song¹, Jing Ji¹, John Cao¹, John Markley¹, Jurgen Doreleijers¹, Kelly Kjer¹, Ken Johnson¹, Kory Seder¹, Michael Runnels¹, Mike Sussman¹, Milo Westler¹, Miron Livny¹, Paul Blommel¹, Peter Lee¹, Qin Zhao¹, Raj Arangarasan¹, Ramya Narayama¹, Rick Amasino¹, Ronnie Fredrick¹, Russell Wrobel¹, Sandy Thao¹, Scott Leisman¹, Todd Kimball¹, Zsolt Zolnai¹, Betsy Lytle², Brian Volkman², Francis Peterson², Chris Oldfield³, Keith Dunker³, Michal Linial⁴, Tatsuya Sawasaki⁵, Yaeta Endo⁵, Masatsune Kainosho⁶, Ray Salemme⁷, Ted Carver⁷ and George Phillips^{1*}

^{*} Corresponding author

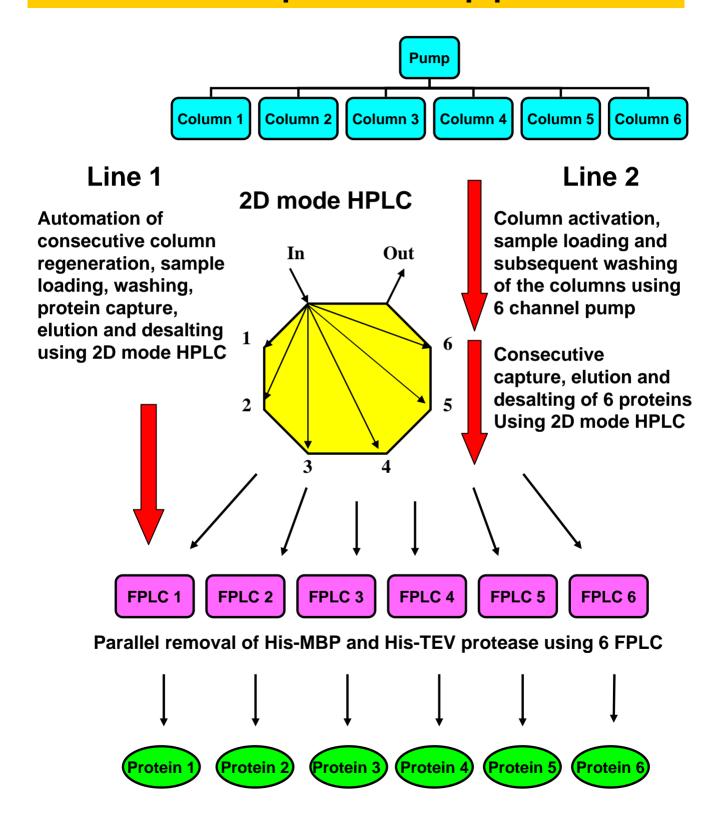
¹University of Wisconsin, Madison

²Medical College of Wisconsin, Milwaukee

³Molecular Kinetics, Pullman, Washington

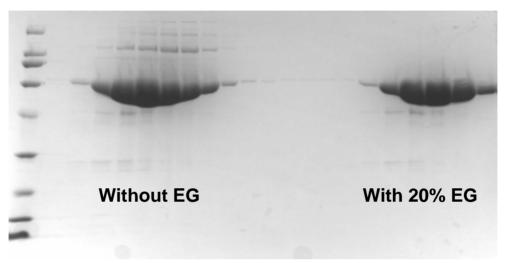
⁴Hebrew University, Jerusalem, Israel

⁵Ehime University, Matsuyama, Japan

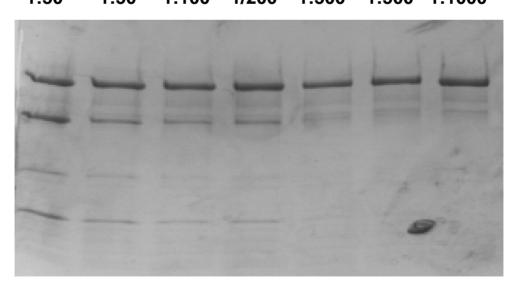

⁶Tokyo Metropolitan University, Tokyo, Japan

⁷3D Pharmaceuticals, Exton, PA, USA

ABSTRACT

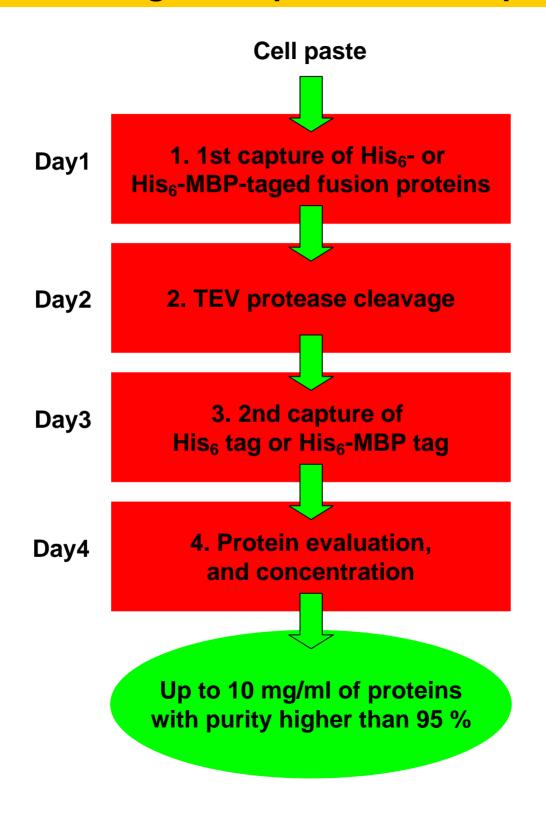

A pipeline system has been developed that allows high throughput purification of Arabidopsis thaliana proteins expressed in E. coli. The key features of this system include (1) a compact 12-channel hi-performance peristaltic pump to load the protein samples onto Ni-IDA columns and subsequent washing of the columns; (2) an HPLC that uses a binary gradient pump to purify 6 proteins by applying gradient elution of buffers from 6 independent Ni-IDA columns; and (3) the parallel 6 HPLC systems for a one-step desalting and a subtractive Ni-IDA chromatography to remove His-tagged proteins from the target protein. By optimizing the purification protocols using this system, we have purified proteins with the MW range of 12 to 30 kDa with a purity of 97% that are suitable for structural determination by X-ray and NMR. We also utilize a highly ordered data storage system, Lamp module in Sesame software, to monitor the quality control of purification processes and to store the biochemical properties of purified protein such as mobility and purity on SDS-polyacylamide gel, UV-visible spectra, MALDI-MS and ESI-MS.

Schematic diagram of an effective and flexible purification pipeline



Optimization of purification protocols

Buffer condition: Buffering agent, pH and salt
Effect of chaotropic agents: Ethylene glycol, glycerol, NaBr
or CHAPS



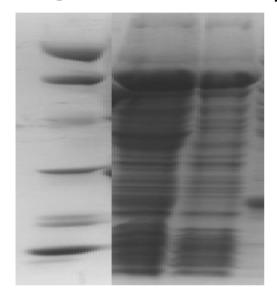
Cleavage of His6-MBP-fusion protein by TEV protease TEV to fusion protein ratio (w/w), 2 hrs at 20 °C 1:30 1:50 1:100 1/200 1:300 1:500 1:1000

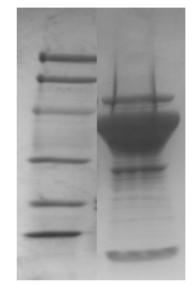
Purification of ¹³C-, ¹⁵N-, ¹³C and ¹⁵N-, and Se-Met-labeled protein

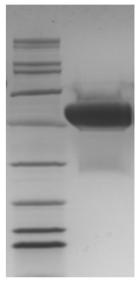
Flow diagram of purification steps

Behaviors of protein during purification

Didn't bind Nicolumn

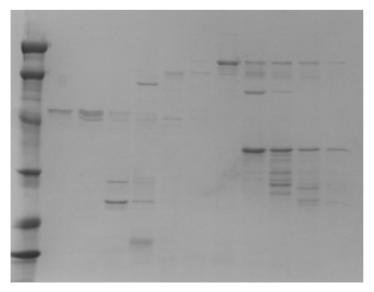

At5g17090

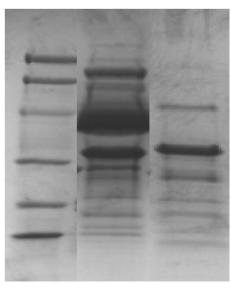

Small insert size


At1g75090 MW: 23 kDa

Insert: 6 kDa

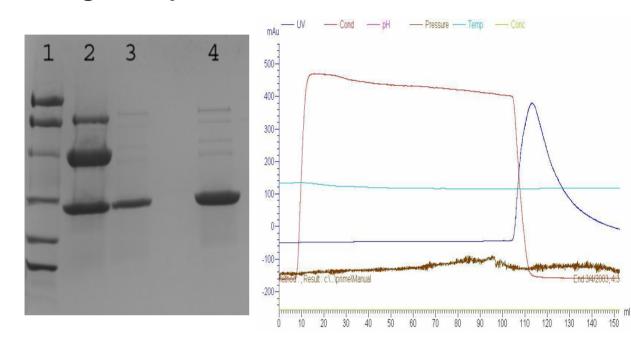
At3g51890 25 kDa 10 kDa





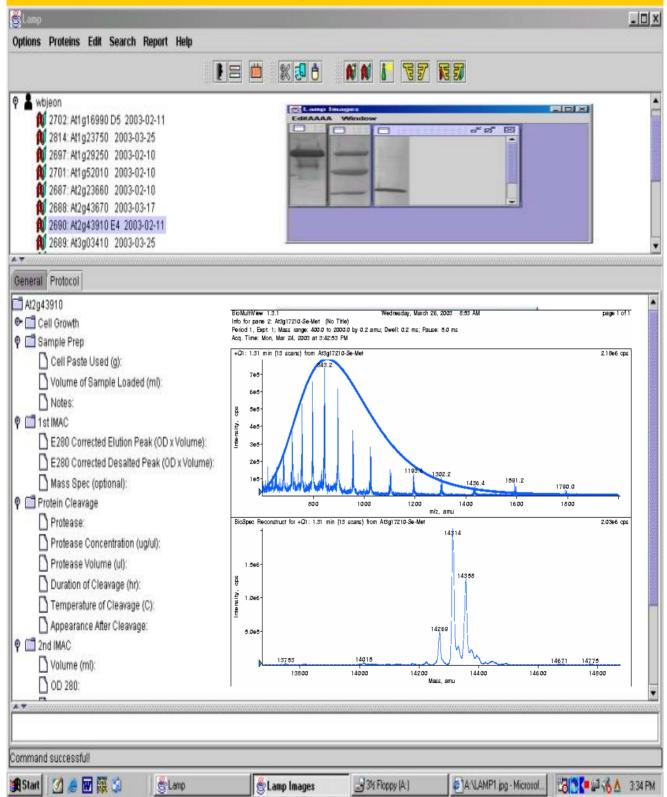
Protein degradation

At5g62290

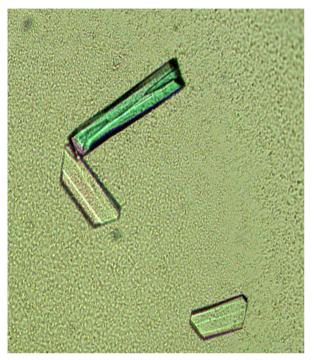


At1g80940

Typical examples of pipeline products


SDS-PAGE and elution profile of Se-Met-labeled At3g16990 protein from 2nd Ni-IDA column

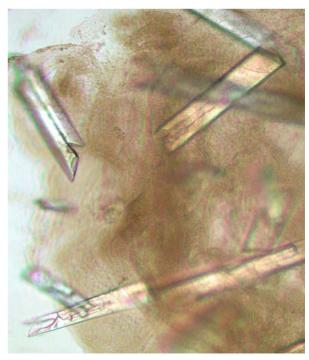
Purification of small size proteins for NMR study


At1g29250 At5g22580 At1g52010

Lamp Module in Genie Software: Highly Ordered Protein Data Management System

Crystal screening

At3g03410


At3g16990

At3g20970

Se-Met-labeled At3g16990

CONCLUSION

- A purification pipeline that consists of a pump, a mode HPLC and 6 simple FPLC has been developed and tested.
- 2. Optimization of protocols together with high speed automation allows us to purify up to 50 mg of 6 different fusion proteins with a purity higher than 95% in a day.
- 3. Each protein is being analyzed it's identity by MALDI- and ESI-MS before it is passed on for crystallization screening.
- 4. The Lamp module in Genie software is being used to store chromatographic elution profiles and gel images.
- 5. The system provides data that will be eventually used to further improve current high throughput protein production.